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Abstract
Weights of Iranian Baluchi sheep, from birth to 180 d of age, recorded every month, were analyzed using Random Regression Models. Independent 
variables were Legendre polynomials of age at recording. Up to four sets of random regression coefficients were fitted for animals’ direct and maternal 
additive genetic and permanent environmental effects. Changes in measurements of error variances by age were modeled through a variance function. 
Orders of polynomial fit from three to five were considered and resulted in up to 36 parameters to be estimated. Direct heritability estimates increased 
after birth and tended to be the highest at ages at which maternal effect estimations tended to be the lowest. Maternal heritability estimations decreased fast
after birth to about 30 of age and decreased slowly after that. Estimations of direct and maternal additive genetic correlation between weights of birth 
with other ages were moderate and between other ages were high. 
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Introduction
Recently, covariance functions and random regression models 
(RRM) have been proposed as an alternative in modeling traits 
that are recorded repeatedly during the animal’s life (i.e., 
longitudinal data 5, 14. In particular, random regression models 
accommodate ‘repeated’ records for traits with changes, gradually 
and continually, over time, and do not require stringent 
assumptions about constancy of variances and correlations 2-4.
Meyer and Hill 11 and Meyer 7 showed that random regression 
models are a special case of covariance functions, and covariance 
functions coefficients can be estimated directly from random 
regression models by restricted maximum likelihood 7, 8, 10.
    R RM a has been used for some times in the analysis of human 
growth curve data. Laird and Ware 19outlined a random regression 
mixed model for longitudinal data which comprised both growth 
curve models and repeatability models as special cases. Andersen
and Pedersen 18 showed how RR can be employed in modeling 
growth curves of pigs on a phenotypic level. RRM are expected 
to give more accurate estimations of genetic parameters and 
predictions of breeding values than the conventional multi trait 
model considering a limited number of points, such as birth, 
weaning, yearling and final weights, used nowadays 9, 11, 15.
    Most countries are now in the process of introducing RRM for 
evaluating dairy cattle. RR models have also been used to describe 
food intake and weight gain in pigs 18 and growth and mature 

weight of beef cows 8, 9; but the benefit of the methodology in the 
analysis of weight data in sheep are as yet unknown. This paper 
describes the application of RR techniques to live weight recorded 
on a population of Baluchi sheep. Also the objective of this study 
was to estimate genetic direct and maternal genetic covariance 
functions using a RR model for weights from birth to 180 d of age 
in Baluchi sheep. 

Material and Methods
Data: Data consisted of weights of sheep collected as part of a 
selection experiment at the Baluchi Sheep Research Station 
(BSHRS), located in Iran. Since 1980, BSHRS has been running a 
genetic improvement program considering growth, fertility and 
maternal ability traits. After basic edits, there were 19,821 sheep 
weights recorded between 1997 and 2007 (Table 1). 

a Random Regression Model. 

Category                                                                                 Value 

No. of records                                                                         19809 

No. of animal                                                                          3952 

No. of dams with progeny                                                      1182 

No. of sires with progeny                                                       142 

Minimum no. of records per animal                                       2159 

Maximum no. of records per animal                                      3240 

Mean live weight overall (kg)                                                19.35 (3.98) 

Mean live weight at weaning (60 days; kg)                           14.72 (3.72) 

Mean live weight at end of test (180 days; kg)                      30.04 (5.53) 

Table 1. Summary of data structure. 

Standard deviation showed in parentheses. 
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Random regression analysis: Covariance between random 
regression coefficients was estimated by REML using DFREML 
algorithm and program of DXMRR 7. Legendre polynomials of 
age at recording were used as independent variables. Analyses 
yielded estimations of covariance among random regression 
coefficients and estimations of variances due to temporary 
environmental variances, so-called measurement error variances. 
The general model can be represented as follows: 

whereY
ijk lnp

= any of weight records; µ  =total average; YR
i
= fixed 

effects of i th  birth year (i = 1, 2, 3, …, 11); SX
j
 = jth fixed effects of 

birth sex (j = 1 and 2); BT
k
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l
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A
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M
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C
 and k

Q
 denote the corresponding orders of fit; and ε
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temporary environmental effect related to Y
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.
    Above statistical model matrix form was as follows: 

Y = XB + Z
1
α +Z

2
γ + W

1
δ + W

2
ρ  + ε 

Y= observations vector; B = the vector of fixed effects and β
m

;and α = the vector of additive genetic direct random coefficients; 
γ  = the vector of maternal additive genetic random coefficients;δ 
= the vector of animal permanent environmental coefficients; ρ = 
the vector of maternal permanent environmental coefficients; X, 
Z

1
, Z

2
, W

1
, and W

2
= incidence matrices; and ε = the vector of 

residuals; k
A
, k

M
, k

C
, and k

Q
 are the matrices of coefficients of the 

covariance function for additive direct and maternal effects and 
animal and permanent environmental effects respectively. A is the 
additive numerator relationship matrix and I is identity matrix. 
    Residual variance is considered in several procedures in models. 
In some models, residual variance in different ages supposed fixed 
and stable in which obtained an estimation for σ

e
2. In some other 

ones, residual variance in different ages supposed variable and 
non-uniform. In this study by supposing independency of 
temporary environmental effects from each other, residual variance 
by using a variance function (VF) degree 2 and 3 was considered 
as follows in computation: 

where σ
j
2 = residual variance in jth age, σ

0
2 = intercept or error 

variance at the mean age, b
r
and v = coefficients and numbers of 

variance functions parameters, respectively. 

Model comparison: Models with different orders of fitting and 
random effects were compared by log-likelihood ratio test (LRT). 
The log-likelihood ratio test only allows comparisons between 
nested models and tends to favor models with higher number of 
parameters 9, 12. Also selection of models was based on Akaike’s 
Information Criterion 20. Akaike 20 proposed a simple and useful 
criterion called Akaike’s Information Criterion (AIC) for selecting 
the best-fit model among alternative models. 
    AIC= -2 log (maximum likelihood) +2 (No. of model parameters). 
Differences between AIC values are important, not the absolute 
size of AIC values. The model with the lowest AIC is considered 
as the best one. Various experiences verify the applicability of 
AIC in model selection 16, 21.

Results and Discussion
Means and numbers of records for the various ages are shown in 
Fig.1. Body weights have an increasing pattern by ages from birth 
to 180 days of age, with a decrease in growth rate after weaning. 

    Totally, eight models were fitted to the data and a description of 
each with the corresponding Log L and AIC values are given in 
Table 2. Increasing the order of fit for direct and maternal 
permanent environmental effects from 3 to 4 (Model 3) improved 
the fit to the data as indicated by an increase in Log L (p<0.01) 
over the other models. Meyer 10reported similar findings. Modeling 
measurement error variances (σ

e
2) using a variance function, 

assuming a log linear model, produced a better fit than assuming 
homogeneous. Both LRT and AIC suggested  a model with k = 3, 
3, 4, 4 and v = 4, with a total of 36 parameters. 
  Estimations of (co)variances and correlations between RR 
coefficients for models with k = 3, 3, 4, 4 and v = 4 are presented in 
Table 3. In all cases, intercept of the polynomial regression 
explained the highest proportion of variation and there were 
positive correlation between the linear and intercept coefficients 
for all effects with the exception of maternal permanent 
environmental effect. Variance functions for residual were as 
follows:

Estimation of variance component: Variance component 
estimations for weights from birth to 180 d of age, obtained with 
the model chosen by LRT and AIC  (k = 3,3,4,4) are presented in 
Fig. 2. Decreasing the order of fit for genetic direct effects slightly 
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Figure 1. Number of records and weights average in 
different ages. 
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changed the partitioning of animal effect variances. The differences 
between the two models were largest after 60 d (not shown). Direct 
additive genetic variance increased steadily over the trajectory. A
similar pattern of variation for direct additive genetic variance 
was reported 2, 6, 17. Maternal additive genetic variance increased 
after birth to a peak around 120 d and decreased thereafter. 
Maternal permanent environmental variance increased after birth 
to a peak around 120 d and decreased after that. Generally, maternal 
variances tended to be higher at younger ages and declined with 
age, particularly beyond post-weaning ages (>120 d). 

Estimation of direct and maternal heritability: Direct and 
maternal heritability estimates for Model 3 are presented in Fig. 3. 
Direct heritability estimations increased after birth (0.1) until 
animals were about 150 d old (0.35) and increased faster after that. 
Maternal heritability estimations decreased faster from birth (0.14) 
to about 30 d of age and decreased slowly with age thereafter. At 
weaning (90 d), maternal heritability was estimated by 0.55. As 

Baluchi sheep were weaned around 90 d of age, results show that 
maternal genetic effects started to decrease before weaning. These 
trends are similar to that described by Lewis and Brotherstone 6.
However, the peak in maternal heritability estimations occurred 
closer to weaning, around 60 to 90 d of age. For data set, direct 
heritability estimations tended to be higher when maternal effect 
estimations were lower. 

Maternal permanent environmental effects: Maternal permanent 
environmental variances as a proportion of the phenotypic 
variance (C) for using a model with k = 3, 3, 4, 4 (Fig. 3) increased 
rapidly from birth (0.1) to about 45 d of age (0.54) remained almost 
the same with a slight trend to decrease until 90 d of age and 
thereafter decreased markedly with age. Most studies reported 
the decrease of maternal permanent environmental effect as time 
lapses post weaning. Albuquerque and Meyer 1 and Meyer 10

described a similar pattern for weights from birth to weaning in 
the Zebu and Wokalup breeders. 

Estimation of correlations: Estimations of direct genetic and 
animal permanent environmental correlation between weights from 
birth to 180 d of age are presented in Table 4. In general, correlations 
tended to decrease by increasing number of days between records. 
Direct genetic correlation estimations decreased by increasing 
age between weights. In addition, direct genetic correlations 
among body weights for all ages were positive; indicating that 
selection for weaning weight would also increase birth weight 
and other weights. The results we have obtained with RRM are, 
overall, similar to those reported by other authors 7, 8, 13. Maximum
of correlations of direct additive genetic, maternal genetic, animal 
permanent environmental and maternal permanent environmental 
effects were estimated between adjacent ages (0.99) and this 
parameter ratio decreased parallel to increase of distance between 
age days in most cases. In a way that mentioned correlations ratio 
between far ages were low and allocated minimum correlations as 
birth weight and weight of 60 days of age (0.63). In general, genetic 
and permanent environmental correlations decreased by increasing 
number of days between records. These trends were reported by 
Lewis and Brotherstone 6 in weight records analysis. Comparison 
between correlations in two models indicated that estimation of 
correlations were similar for any two models except maternal 
additive genetic correlations between birth weight and body 
weight in other ages that were more in Model 4 relating to 
Model 3. 

        0                        1                               2                          3

                                                            K=3,3,4,4 

Additive direct effect 

    7.006                   0.939                        -0. 357 

    3.295                   1.757                        -0.0200 

   -0.374                  -0.0103                       0.156 

Additive maternal effect 

    1.233                   0.930                        -0.931

    0.338                   0.107                        -0.809

   -0.189                 -0.0487                        0.0336

Animal permanent environmental effect 

    1.381                     0.971                        0.223                 -0.863  

    1.617                     2.009                        0.273                 -0.922 

    0.052                     0.077                        0.0401                0.066 

  -0.479                    -0.618                         0.006                 0.223 

Maternal permanent environmental effect 

    11.121                    0.944                        0.997                 0.386 

    3.119                      0.981                       -0.918                 0.061   

   -1.870                    -0.511                         0.316                -0.452 

    0.231                    -0.018                        -0.046                 0.032 

Table 3. Estimations of variances (diagonal), covariance 
(below diagonal), and correlations (above diagonal) 
between random regression coefficients for model 
with order of fit of  3,3,4,4 for additive genetic direct 
and maternal effects and animal and maternal 
permanent environmental effects respectively and 
fitting a cubic variance function for measurement 
errors.

Model Ak Mk Qk Ck 1v np n         O.F.F        LogL           AIC

1              5        3        5         3         3              46          ..            3          -29423.0       58938.0

2              3        4        4         3         3              36          ..            3          -26155.7       52383.4

3              3        3        4         4         3              36          ..            3          -25298.4       50668.8

4              3        3        3         3         3              28          ..            3          -25467.6       50991.2

5              3        3        3         3         ..              25          1            3          -27750.0       55550.0

6              3        3        3         3         ..              31          7            3          -25206.4       50474.8

7              3        3        3         3         2              27          ..            3          -25765.7       51585.4

8              3        3        3         3         ..              28          1            4          -27692.0       55440.0

Table 2. Order of fit for animal direct  (k
a
) and maternal (k

m
) genetic effects, animal (k

q
)

and maternal permanent (k
c
)  environmental effects, and residual (v-1), number 

of parameters (np), log likelihood function (log L), Akaike’s Information 
Criterion (AIC), number of time stages (or metameter) considered for estimating 
residual variance component(n), and order of fit of fixed regression (O.F.F). 
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Figure 2. Direct additive genetic variance (top left), maternal additive genetic variance (top right), 
maternal permanent environmental variance (bottom right) and animal permanent environmental 
variance (bottom left) estimated for body weight based on Models 3 and 4. 
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Figure 3. Direct (top left) and maternal (top right) heritability estimates and maternal 
(bottom) variance component estimates as proportions of phenotypic variance for data 
from random regression analysis with k = 3, 3, 4, 4. 

Conclusions
Direct heritability estimations increased after birth and tended to 
be highest at ages which maternal effect estimations tended to be 
lowest. Maternal heritability estimations decreased after birth to 
30 d of age and decreased slowly thereafter. Similar results were 
found by Lewis and Brotherstone 6. A higher response to selection 
for maternal ability would be expected if selection was based on 
pre weaning weights. 
   A model with RR modeled the pattern of (co)variances in the 
data adequately, by estimations similar to those obtained with 
univariate analysis. Increasing the order of polynomial fit increased 

the flexibility of the curve. However, applying polynomials with a 
high order of fit increased computational requirements, made 
convergence difficult to reach and increased sampling problems1,5.
  Covariance functions that give the covariances between any 
two ages within the range of ages in the data can be estimated by 
applying a RRM and REML 7, and impose a structure on the 
covariance matrices. Instead of predicting breeding value (BV) 
for each recorded weight, BV is predicted for additive direct and 
maternal regression coefficients. 
   Using the genetic regression coefficients, BV can be predicted 
for the growth curve as a whole, for any age (within the range in 
the data), even those for which the animal had no records and for 
functions of the growth curve. Animals with only one or even 
without records can be evaluated using information from relatives. 
Random regression models are expected to give more accurate 
estimations of genetic parameters and predictions of breeding 
values than the conventional multi trait model. 
  Applying RRM instead of multi trait models for genetic 
evaluations of growth traits will increase the number of mixed- 
model equations, the coefficient matrix of random effects will be 
denser, and, consequently, computing requirements will increase 
accordingly. Alternatives to decrease the order of polynomial fit 
must be investigated. 

Table 4. Direct genetic (above diagonal) and animal permanent 
environmental  (below diagonal) correlation between 
weights at selected ages (in days). 

Age         1               30             60          90         120        150         180

1             1             0.67          0.66         0.68        0.70      0.72        0.72

30         0.68             1            0.99         0.98        0.95      0.89        0.78

60         0.70          0.77            1            0.99        0.97      0.91        0.82

90        -0.39         -079         -0.23            1          0.98      0.95        0.88

120      -0.54         -0.88        -0.41         0.98          1         0.98        0.94

150      -0.62         -0.88        -0.42         0.96        0.99        1           0.98

180      -0.72         -0.73        -0.30         0.86        0.89      0.94          1
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