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Abgract
Weights of Iranian Baluchi sheep, from birth to 180 d of age, recorded every month, were analyzed using Random Regression Models. | ndependent
variableswere L egendre polynomials of ageat recording. Up to four setsof random regression coefficientswerefitted for animals' direct and maternal
additive genetic and permanent environmental effects. Changesin measurementsof error variances by age were modeled through avariance function.
Ordersof polynomial fit from threeto fivewere considered and resulted in up to 36 parametersto be estimated. Direct heritability estimatesincreased
after birth and tended to be the highest at agesat which maternal effect estimationstended to be the lowest. Maternal heritability estimations decreased fast
after birth to about 30 of age and decreased slowly after that. Estimations of direct and maternal additive genetic correlation between weights of birth

with other ages were moderate and between other ageswere high.
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Introduction

Recently, covariance functions and random regression models
(RRM) have been proposed as an alternative in modeling traits
that are recorded repeatedly during the animal’s life (i.e.,

longitudinal data *>**. In particular, random regression models
accommodate‘ repeated’ recordsfor traitswith changes, gradually
and continually, over time, and do not require stringent

assumptions about constancy of variances and correlations 24,

Meyer and Hill ** and Meyer ” showed that random regression
modelsare aspecial caseof covariancefunctions, and covariance
functions coefficients can be estimated directly from random

regression modelsby restricted maximum likelihood 7&1°,

R RM @ has been used for sometimesin the analysis of human
growth curvedata. Laird and Ware **outlined arandom regression
mixed model for longitudinal datawhich comprised both growth
curve modelsand repeatability modelsas special cases. Andersen
and Pedersen 8 showed how RR can be employed in modeling
growth curves of pigs on aphenotypic level. RRM are expected
to give more accurate estimations of genetic parameters and
predictions of breeding values than the conventional multi trait
model considering a limited number of points, such as birth,
weaning, yearling and final weights, used nowadays % %5,

Most countries are now in the process of introducing RRM for
evaluating dairy cattle. RR models have a so been used to describe
food intake and weight gain in pigs *® and growth and mature

2 Random Regression Model.
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weight of beef cows?®¢; but the benefit of the methodology inthe
analysis of weight datain sheep are asyet unknown. This paper
describesthe application of RR techniquesto liveweight recorded
on apopulation of Baluchi sheep. Also the objective of this study
was to estimate genetic direct and maternal genetic covariance
functionsusing aRR model for weightsfrom birthto 180 d of age
in Baluchi sheep.

Material and Methods
Data: Data consisted of weights of sheep collected as part of a
selection experiment at the Baluchi Sheep Research Station
(BSHRS), located in Iran. Since 1980, BSHRS has been running a
genetic improvement program considering growth, fertility and
maternal ability traits. After basic edits, there were 19,821 sheep
weightsrecorded between 1997 and 2007 (Table 1).

Table 1. Summary of datastructure.

Category Value
No. of records 19809
No. of animal 3952
No. of dams with progeny 1182

No. of sires with progeny 142

Minimum no. of records per animal 2159
Maximum no. of records per animal 3240
Mean live weight overall (kg) 19.35 (3.98)
Mean live weight at weaning (60 days; kg) 14.72 (3.72)
Mean live weight at end of test (180 days; kg) 30.04 (5.53)

Standard deviation showed in parentheses.
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Random regression analysis. Covariance between random
regression coefficientswas estimated by REML using DFREML
algorithm and program of DXMRR 7. Legendre polynomials of
age at recording were used as independent variables. Analyses
yielded estimations of covariance among random regression
coefficients and estimations of variances due to temporary
environmental variances, so-called measurement error variances.
The general model can be represented asfollows:

ko1

3
Y\jklnp:‘u-'.YRl-'- S(j + BTk+ AGI + %n-'- ann?m(wijklng + anpmgm aﬁi}k\np) +

K, -1 k-1 ko1
2y o(d, )+X8 o(d, Y+2Xp o(d, )+e
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WhereYijkln = any of weight records; i =total average; YR=fixed
effectsof i th birthyear (i=1,2,3, ..., 11); S =j"fixed effectsof
birthsex (j = 1 and 2); BT, = fixed effectsof k" birth procedure (k =
land 2); AG =fixed effectsof I"eweage(1=1,2, ...,8); SA =fixed
effectsof n"birthseason (n=1,2, ..., 4); o, = standardized age
inrangeof +1to-1; o, (o, ) = them" Legendre polynomial of
age; = m" fixed regression coefficients; o , v, , 6, ,and p, are
mt" random regression coefficients for direct additive genetic,
maternal additive genetic, animal and maternal permanent
environmental effects, respectively, related to p" animal. k, k,,,
k. and k, denote the corresponding orders of fit; and ¢, = the
temporary environmental effect relatedto Y.

ijkinp*
Above statistical model matrix formwasasfollows:

Y=XB+Zo+Zy+W,6+W,p +¢

a k,® 4 0 0 0 0
14 0 k, ® 4 0 0
v| 6 | = 0 0 ke ®1 0 0
P 0 0 ko ®I 0
& 0 0 R

Y= observations vector; B = the vector of fixed effects and 3
;and o= the vector of additive genetic direct random coefficients;
y =thevector of maternal additive genetic random coefficients;s
=thevector of animal permanent environmental coefficients; p =
the vector of maternal permanent environmental coefficients; X,
Z,Z, W, and W, = incidence matrices; and £ = the vector of
residuas; k,, k,,, k., and kQ are the matrices of coefficients of the
covariance function for additive direct and maternal effects and
animal and permanent environmental effectsrespectively. Aisthe
additive numerator relationship matrix and | isidentity matrix.

Residual varianceisconsideredin severa proceduresin models.
In somemodels, residual variancein different ages supposed fixed
and stable in which obtained an estimation for 62. In some other
ones, residual variance in different ages supposed variable and
non-uniform. In this study by supposing independency of
temporary environmental effectsfrom each other, residual variance
by using avariance function (VF) degree 2 and 3 was considered
asfollowsin computation:

v-1
ci=0; exp{1+ Zbr(a;)}

r=1
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where 62 = residual variance in j" age, o7 = intercept or error
variance at the mean age, b and v = coefficients and numbers of
variance functions parameters, respectively.

Model comparison: Models with different orders of fitting and
random effectswere compared by log-likelihood ratio test (LRT).
The log-likelihood ratio test only allows comparisons between
nested models and tends to favor models with higher number of
parameters ® 12 Also selection of models was based on Akaike's
Information Criterion 2. Akaike 2 proposed asimple and useful
criterion called Akaike'sInformation Criterion (AIC) for selecting
the best-fit model among alternative models.

AlC=-2log (maximum likelihood) +2 (No. of model parameters).
Differences between Al C values are important, not the absolute
sizeof AIC values. Themodel with thelowest AlC isconsidered
as the best one. Various experiences verify the applicability of
AlCinmodel selection 62,

Resultsand Discussion
Means and numbers of recordsfor the various ages are shownin
Fig.1. Body weightshave anincreasing pattern by agesfrom birth
to 180 days of age, with adecreasein growth rate after weaning.
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Figure 1. Number of records and weights average in
different ages.

Totally, eight modelswerefitted to the dataand adescription of
each with the corresponding Log L and AIC values are given in
Table 2. Increasing the order of fit for direct and maternal
permanent environmental effectsfrom 3to 4 (Model 3) improved
thefit to the data as indicated by an increasein Log L (p<0.01)
over theother models. Meyer °reported similar findings. Modeling
measurement error variances (c2) using a variance function,
assuming alog linear model, produced a better fit than assuming
homogeneous. Both LRT and AlC suggested amodel withk =3,
3,4, 4andv =4, with atota of 36 parameters.

Estimations of (co)variances and correlations between RR
coefficientsfor modelswithk =3, 3,4, 4andv =4 arepresentedin
Table 3. In all cases, intercept of the polynomial regression
explained the highest proportion of variation and there were
positive correlation between the linear and intercept coefficients
for all effects with the exception of maternal permanent
environmental effect. Variance functions for residual were as
follows

07 =2/204 exp[ 1-0/3624 (a;)—1.6418 (a;)* +1/8835 (a;)’]
Estimation of variance component: Variance component
estimations for weightsfrom birth to 180 d of age, obtained with

themodel chosenby LRT andAIC (k =3,3,4,4) are presented in
Fig. 2. Decreasing the order of fit for genetic direct effectsdightly
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Table2. Order of fit for animal direct (k) and maternal (k) genetic effects, animal (k )
and maternal permanent (k) environmental effects, and residual (v-1), number
of parameters (np), log likelihood function (log L), Akaike s Information
Criterion (AIC), number of time stages (or metameter) considered for estimating
residual variance component(n), and order of fit of fixed regression (O.F.F).

Model k, k), k, k. v-1 —mp n  OFF LogL AlC

1 5 3 5 3 3 46 3 294230 589380
2 304 4 3 03 36 3 261557 523834
3 303 4 4 03 36 . 3 252984 50668.8
4 303 3 3 3 28 . 3 -25467.6 509912
5 3003 3 3 . 25 1 3 277500 555500
6 303 3 3 31 3 252064 50474.8
7 303 3 3 2 27 3 257657 515854
8 33 3 3 28 1 4 276920 55440.0

Table 3. Estimations of variances (diagonal), covariance
(below diagonal), and correlations (above diagonal)
between random regression coefficientsfor model
with order of fitof 3,3,4,4for additivegenetic direct
and maternal effectsand animal and maternal
permanent environmental effectsrespectively and
fitting acubic variance function for measurement

erors.
0 1 2 3
K=3,3,4,4
Additive direct effect
7.006 0.939 -0. 357
3.295 1.757 -0.0200
-0.374 -0.0103 0.156
Additive maternal effect
1.233 0.930 -0.931
0.338 0.107 -0.809
-0.189 -0.0487 0.0336
Animal permanent environmental effect
1.381 0.971 0.223 -0.863
1.617 2.009 0.273 -0.922
0.052 0.077 0.0401 0.066
-0.479 -0.618 0.006 0.223
Maternal permanent environmental effect
11.121 0.944 0.997 0.386
3.119 0.981 -0.918 0.061
-1.870 -0.511 0.316 -0.452
0.231 -0.018 -0.046 0.032

changed the partitioning of animal effect variances. Thedifferences
between thetwo model swere largest after 60 d (not shown). Direct
additive genetic varianceincreased steadily over thetrgjectory. A
similar pattern of variation for direct additive genetic variance
was reported 2617, Maternal additive genetic variance increased
after birth to a peak around 120 d and decreased thereafter.
Maternal permanent environmental variance increased after birth
toapeak around 120 d and decreased after that. Generally, maternal
variances tended to be higher at younger ages and declined with
age, particularly beyond post-weaning ages (>120 d).

Estimation of direct and maternal heritability: Direct and

maternal heritability estimatesfor Model 3 arepresentedin Fig. 3.
Direct heritability estimations increased after birth (0.1) until

animaswereabout 150 d old (0.35) and increased faster after that.
Maternal heritability estimations decreased faster from birth (0.14)
to about 30 d of age and decreased slowly with age thereafter. At
weaning (90 d), maternal heritability was estimated by 0.55. As
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Baluchi sheep wereweaned around 90 d of age, results show that
maternal genetic effects started to decrease beforeweaning. These
trends are similar to that described by Lewis and Brotherstone®.
However, the peak in maternal heritability estimations occurred
closer to weaning, around 60 to 90 d of age. For data set, direct
heritability estimationstended to be higher when maternal effect
estimationswere lower.

Maternal permanent environmental effects: Materna permanent
environmental variances as a proportion of the phenotypic
variance (C) for usingamodel withk =3, 3,4, 4 (Fig. 3) increased
rapidly from birth (0.1) to about 45 d of age (0.54) remained amost
the same with a dlight trend to decrease until 90 d of age and
thereafter decreased markedly with age. Most studies reported
the decrease of maternal permanent environmental effect astime
lapses post weaning. Albuguerque and Meyer * and Meyer 1°
described asimilar pattern for weights from birth to weaning in
the Zebu and Wokalup breeders.

Estimation of correlations: Estimations of direct genetic and

animal permanent environmental correl ation betweenweightsfrom
birthto 180d of agearepresentedin Table4. Ingenera, correlations
tended to decrease by increasing number of days between records.
Direct genetic correlation estimations decreased by increasing

age between weights. In addition, direct genetic correlations
among body weights for all ages were positive; indicating that
selection for weaning weight would also increase birth weight
and other weights. The results we have obtained with RRM are,
overall, similar to those reported by other authors™8 13, Maximum
of correlations of direct additive genetic, maternal genetic, animal
permanent environmental and maternal permanent environmental
effects were estimated between adjacent ages (0.99) and this
parameter ratio decreased parallel toincrease of distance between
age daysin most cases. In away that mentioned correlationsratio
between far ageswerelow and allocated minimum correlationsas
birthweight and weight of 60 daysof age (0.63). In generdl, genetic
and permanent environmental correlationsdecreased by increasing
number of days between records. These trends were reported by
Lewisand Brotherstone®inweight records analysis. Comparison
between correlations in two modelsindicated that estimation of
correlations were similar for any two models except materna

additive genetic correlations between birth weight and body

weight in other ages that were more in Model 4 relating to

Modd 3.
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Figure2. Direct additive genetic variance (top | eft), maternal additive genetic variance (top right),
maternal permanent environmental variance (bottom right) and animal permanent environmental
variance (bottom left) estimated for body weight based on Models 3 and 4.
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Table4. Direct genetic (above diagonal) and animal permanent
environmental (below diagonal) correlation between
weights at selected ages (in days).

Age 1 30 60 90 120 150 180
1 1 0.67 0.66 068 070 072 0.72
30 0.68 1 0.99 098 095 089 0.78
60 0.70 0.77 1 099 097 091 0.82
90  -0.39 -079 -0.23 1 098 095 088
120 -0.54 -0.88  -0.41 0.98 1 098  0.94
150 -0.62 -0.88  -0.42 096  0.99 1 0.98
180 -0.72 -0.73  -0.30 0.86 0.89 0.94 1
Conclusions

Direct heritability estimationsincreased after birth and tended to
be highest at ageswhich maternal effect estimationstended to be
lowest. Maternal heritability estimations decreased after birth to
30d of age and decreased slowly thereafter. Similar resultswere
found by Lewisand Brotherstone®. A higher responseto selection
for maternal ability would be expected if selection was based on
preweaning weights.

A model with RR modeled the pattern of (co)variancesin the
data adequately, by estimations similar to those obtained with
univariateanalyss. Increasing the order of polynomial fitincreased
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Figure 3. Direct (top left) and maternal (top right) heritability estimates and maternal
(bottom) variance component estimates as proportions of phenotypic variance for data
from random regression analysiswithk = 3, 3, 4, 4.

theflexibility of the curve. However, applying polynomialswitha
high order of fit increased computational requirements, made
convergencedifficult to reach and increased sampling problems'*.

Covariance functions that give the covariances between any
two ageswithin the range of agesin the data can be estimated by
applying a RRM and REML 7, and impose a structure on the
covariance matrices. Instead of predicting breeding value (BV)
for each recorded weight, BV is predicted for additivedirect and
maternal regression coefficients.

Using the genetic regression coefficients, BV can be predicted
for the growth curve asawhole, for any age (withintherangein
the data), even those for which the animal had no recordsand for
functions of the growth curve. Animals with only one or even
without records can be eval uated using information from rel atives.
Random regression models are expected to give more accurate
estimations of genetic parameters and predictions of breeding
valuesthan the conventional multi trait model.

Applying RRM instead of multi trait models for genetic
evaluations of growth traits will increase the number of mixed-
model equations, the coefficient matrix of random effectswill be
denser, and, consequently, computing requirementswill increase
accordingly. Alternatives to decrease the order of polynomial fit
must beinvestigated.

Journal of Food, Agriculture & Environment, VVol.8 (2), April 2010



References

1Albuquerge, L. G and Meyer, K. 2001. Estimates of covariance function
for growth from birth to 630 days of agein Nelore cattle. J. Anim. Sci.
79:2776-2789.

2Ghafouri Keshi, F., Eskandarinasab, M. P. and Shahir, M. H. 2008.
Estimation of direct and maternal effects on body weight in Mehraban
sheep using random regression models. Arch. Tierz., Dummerstorf
51(3):235-246.

SHuisman, A. E., Verkamp, R. F. and Van Arendonk, J. A. M. 2002.
Genetic parametersfor different random regression modelsto describe
theweight data of pigs. J. Animal Sci. 8:575-582.

4Jamrozic, J. and Schaeffer, L. R. 1997. Estimates of genetic parameters
for test day model with random regressions for production of first
lactation Holsteins. J. Dairy Sci. 80:762-770.

SKirkpatrick, M., Hill, W. G. and Thompson, R. 1994.Estimating the
covariance structure of traitsduring growth and aging, illustrated with
lactation in dairy cattle. Genet. Res. 64:57-69.

SLewis, R. M. and Brotherstone, S. 2002. A genetic evaluation of growth
in sheep using random regression techniques. J. Animal Sci. 74: 63-70.

"Meyer, K. 1998. “DXMRR” is a program to estimate covariance
functionsfor longitudina databy restricted maximum likelihood. Proc.
6" World Cong. Genet. Appl. Livest. Prod., Armidale, NSW, Australia,
27:465-466.

SMeyer, K. 1999. Estimates of genetic and phenotypic covariance
functionsfor post weaning growth and mature weight of beef cows. J.
Anim. Breed. Genet. 116:181-205.

*Meyer, K. 2000. Random regression to model phenotypic variationin
monthly weights of Australian beef cows. Livest. Prod. Sci. 65:19-38.

°Meyer, K. 2001. Estimates of direct and maternal covariance function
for growth of Australian beef calvesfrom birth to weaning. Genet. Sel.
Evol. 33:1-28.

UMeyer, K. and Hill, W. G. 1997. Estimation of genetic and phenotypic
covariance function for longitudinal or repeated records by restricted
maximum likelihood .Livest. Prod. Sci. 47:185-200.

2Qlori, V. E., Hill, W. G, McGuirk, B. J. and Brotherston, S. 1999.
Estimating variance componentsfor test day milk record by restricted
maximum likelihood with random regression animal model. Livest.
Prod. Sci. 61:53-63.

3pPool, M. H. and Meuwissen, T. H. E. 2000. Reduction of the number
of parameters needed for a polynominal random regression test day
model. Livest. Prod. Sci. 64:133-145.

1Schaeffer, L. R. and Dekkers, J. C. M. 1994. Random regressionsin
animal models for test-day production in dairy cattle. Proc. 5" Word
Congr. Genet. Appl. Livest. Prod., Guelph, Canada, 18:443-446.

BSwalve, H. H. 2000. Theoretical basis and computational methods for
different test-day genetic evaluation methods. J. Dairy Sci. 83:1115-
1124,

8Burnham, K. P. and Anderson, D. R.1998. Model Selection and
Inference: A Practical Information-theoretic Approach. Springer-Verlag,
New York.

YFischer, T. M., Gilmour, A. R. and Van der Werf, J. H. J.
2004.Computing approximate standard errorsfor genetic parameters
derived from random regression model sfitted by averageinformation
REML. Genetics Selection Evolution 36:363-369.

BAndersen, S. and Pedersen, B.1996. Growth and food intake curvesfor
group-housed gilts and castrated male pigs. Animal Science 63:457-
464.

Laird, N. M. and Ware, J. H. 1982. Random-effects model for
longitudinal data. Biometrics 38:963-974.

DAkaike, H. 1973. Information theory and an extension of the maximum
likelihood principle. In Petrov, B. N. and Csaki, F. (eds). Proceedings
of the Second International Symposium on Information Theory.
Akademiai Kiado, Budapest, pp. 267-281.

2\Weada, Y., and Kashiwagi, N. 1990. Selecting statistical models with
information statistics. J. Dairy Sci. 73:3575-3582.

Journal of Food, Agriculture & Environment, Vol.8 (2), April 2010

663



